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Down syndrome (DS), or trisomy 21, is a common disorder associated
with several complex clinical phenotypes. Although several hypoth-
eses have been put forward, it is unclear as to whether particular gene
loci on chromosome 21 (HSA21) are sufficient to cause DS and its
associated features. Here we present a high-resolution genetic map
of DS phenotypes based on an analysis of 30 subjects carrying rare
segmental trisomies of various regions of HSA21. By using state-of-
the-art genomics technologies we mapped segmental trisomies at
exon-level resolution and identified discrete regions of 1.8–16.3 Mb
likely to be involved in the development of 8 DS phenotypes, 4 of
which are congenital malformations, including acute megakaryocytic
leukemia, transient myeloproliferative disorder, Hirschsprung dis-
ease, duodenal stenosis, imperforate anus, severe mental retardation,
DS-Alzheimer Disease, and DS-specific congenital heart disease
(DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb inter-
val. Furthermore, the map enabled us to present evidence against the
necessary involvement of other loci as well as specific hypotheses that
have been put forward in relation to the etiology of DS—i.e., the
presence of a single DS consensus region and the sufficiency of DSCR1
and DYRK1A, or APP, in causing several severe DS phenotypes. Our
study demonstrates the value of combining advanced genomics with
cohorts of rare patients for studying DS, a prototype for the role of
copy-number variation in complex disease.

copy number variants � genomic structural variation � human genome �
congenital heart disease � leukemia

For over two decades trisomy 21 has represented a prototype
disorder for the study of human aneuploidy and copy-number

variation (1, 2), but the genes responsible for most Down syndrome
(DS) phenotypes are still unknown. The analysis of several over-
lapping segmental trisomies 21 has led to the suggestion that dosage
alteration through duplication of an extended region on chromo-
some 21 (HSA21) is associated with DS features (2–5, 42). How-
ever, humans with segmental trisomy 21 are rare, and thus human-
based DS-phenotypic maps have been of low resolution, far beyond
the level of few or single genes, or even exons. Consequently,

gene–disease links have often been based on indirect evidence from
cellular or animal models (6, 7). Moreover, current hypotheses
argue for the existence of a critical region, the DS consensus region
(DSCR), responsible for most severe DS features (6, 8, 9), or
presume the causative role of a small set of genes including DSCR1
and DYRK1A, or APP, for these phenotypes (6, 7).

By using state-of-the-art genomics together with a large panel of
partially trisomic individuals, we present the highest resolution DS
phenotype map to date and identify distinct genomic regions that
likely contribute to the manifestation of 8 DS features. Four of these
phenotypes have never been associated with a particular region of
HSA21. The map also enables us to rule out the necessary
contribution of other HSA21 regions, thus providing strong evi-
dence against the existence of a single DSCR, and a lack of support
for the necessary synergistic roles of DSCR1 and DYRK1A, or APP,
as predominant contributors to many DS phenotypes.

Results and Discussion
To construct a high-resolution map of DS we assembled a panel
of 30 individuals with rare, segmental trisomies 21 whose clinical
features are summarized in Table 1. Nine patients are described
for the first time, 16 were reassessed with respect to phenotype,
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molecular cytogenetics, and breakpoints, and 5 were previously
published (2, 10). We note that the ability to parse DS genes to
phenotypes is determined by 3 factors: (i) phenotypic resolution,
determined by the high-risk ratio of a given feature for DS versus
normal and by the number of affected individuals; (ii) molecular
resolution determined by technologies for identifying break-
points and duplicated regions; and (iii) map resolution, deter-
mined by the density and locations of breakpoint positions in the
patient panel. The high-risk ratio for a feature in DS suggests
that a gene (or several genes) on HSA21 independently con-
tribute(s) to the risk. The existence of segmental trisomies
associated with the phenotype suggests that the gene(s) can be
narrowed by analyzing cases displaying the phenotype, but-
tressed by cases without the region and without the phenotype.
The candidate region for a DS phenotype is thereby determined
by all 3 factors above, as formally described below and in the SI
Appendix. With a larger number of cases [and as seen for
DS-specific congenital heart disease (DSCHD) in our panel], the
likelihood that a gene region contributes to the phenotypic
variance is reflected by classical genetic concepts, namely, for all
cases taken together, the duplication of the given region appears
to generate the same penetrance (proportion of cases with the

phenotype) and expressivity (variation of the phenotype, such as
types of congenital heart disease) as is seen in full trisomy 21.

Specifically, we mapped HSA21 chromosomal rearrangements
across patients by successively and systematically applying several
technologies that interrogate HSA21 at increasingly high resolution
(see e.g., Fig. 1; details in relation to the approaches used are in
Materials and Methods). Initially, patients’ karyotypes were ascer-
tained through standard cytogenetic analyses. Then, breakpoint
information and the orientation of segments were refined by using
multicolor fluorescence in situ hybridization (FISH) with a panel of
350 bacterial artificial chromosomes and P1 artificial chromosomes
(BAC/PACs). Furthermore, higher-resolution breakpoint mapping
was achieved by using quantitative Southern blot analysis of single
copy fragments in patient and parental control DNAs (3, 11, 12).
Finally, to map chromosomal breakpoints at the level of single
exons, we used high-density isothermal oligonucleotide DNA tiling
arrays (13) with 380,000 probes that interrogate HSA21 at a median
density �100 bp, i.e., in an unbiased fashion, providing an effective
resolution �300 bp (13, 14). In general the tiling array results
agreed well with the FISH, BAC/PAC, and Southern blot results
(see Fig. 2), providing two or more independent determinations of
copy number throughout the chromosome. However, the key
significance of high-resolution breakpoint-mapping for linking phe-

Table 1. Major clinical features of patients

Feature JL JG GY IS MI WB JS KG GP KJ BS HOU WS MJF WA DS SOS SW MB ZSC JJS STO SOL JSB NA NO BA SM HAD PM

DSCHD – – – – – – PDA† – – – AVSD*† ASD* – – AVSD§ – � TOF*†‡ – TOF*†‡ MI† VSD* VSD*†‡ – ASD – AVSD PS† AVSD VSD*†‡

AMKL – – – – – – – – – – – � – – – – – – – – – – – – – – – – – –
TMD – – – – – – – – – – – – � – – – – – – – – � – – – – – – – –
HSCR – – – – – – – – – – – – – – – – �* �* �* – – – – – – – –
DST – – – – – – �* – – – – – – – – – – – – – – – – – – – –
IA – – – – – – – – – – – – – – – – – – – – – �* – – – – – – – –
MR �30 P 59 Nor M M M M-P 85 70 52 � 47 P M M 69 P M 42 P P 52

Numbers represent full scale IQ test. �, phenotype present; –, phenotype not present; AVSD, atrioventricular septal defect; PDA, patent ductus arteriosus; ASD,
atrial septal defect; TOF, tetralogy of Fallot; MI, mitral insufficiency; VSD, ventricular septal defect; PS, pulmonic stenosis; blank, no information available; P,
profound MR; M, moderate MR.
*Surgically repaired.
†Determined by echocardiogram.
‡Determined by cardiac catheterization.
§Determined by autopsy.

Fig. 1. High-resolutionanalysisof subjectDup21WB. (A) Photograph(age,4mos). (B)BAC-FISHanalysis indicatesduplicationofD21S55 (blue)butnotMX1/2 (fuchsia).
21, normal HSA21; DER21, rearranged chromosome. The orientation of nonduplicated segments is indicated in red (SOD1) and blue (CD18/ITBG2). (C) Summary of
duplication and orientation of segments detected by using 19 FISH and 24 molecular markers. (D) HR-CGH analysis. Displayed are log2-ratios measured for Dup21WB
relative to the control pool along HSA21.
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notype and genotype is 2-fold, illustrated by the analysis of HSA21
in patient Dup21SOL, where the tiling microarrays detected a small
gap in the duplicated region, unsuspected by the lower level of
resolution afforded by the previous BAC/PAC analyses, thus elim-
inating the genes in the gap as candidates for his features. The
microarrays thereby enabled substantially narrowing the region
associated with DSCHD (see below). Furthermore, in patient
Dup21NA, the tiling microarrays extend the Southern and BAC/
PAC data to include DYRK1A but not DSCR1 in the duplicated
region and thereby argue against the necessary synergy of DSCR1
and DYRK1A for producing the DS features found in this family.

We combined the results from all experimental analyses into the
breakpoint map shown in Fig. 2. For many individuals the map
displays subtle translocations and internal rearrangements causing
duplications and deletions of HSA21 regions. Interestingly, for
several patients, additional copies of several noncontiguous regions
were detected by the tiling arrays, indicating that complex rear-
rangements involving multiple events had occurred (Table S1 in SI
Appendix). For instance, Dup21WB displayed 5 obligatory breaks
resulting in a mosaic of inverted and direct duplications and
deletions (Fig. 1). For 3 individuals (Dup21GY, Dup21KJ,
Dup21SOL), the segmental trisomic, tetrasomic, and monosomic
regions as well as chromosomal breakpoints were validated by
quantitative PCR (qPCR) (Fig. S1 in the SI Appendix). Further-
more, as we described in the SI Appendix, for Dup21JG and
Dup21NA, sequencing the breakpoint junctions of partially tri-
somic regions (Fig. S2 in the SI Appendix) revealed that these

rearrangements were likely caused by a microhomology-associated
process, such as nonhomologous end-joining.

In addition to the large chromosomal variations, smaller regions
[i.e., copy-number variants (CNVs) �500 Kb] of dosage alteration
were observed (Table S2 in the SI Appendix). CNVs at this
size-range are common in the normal population (15–18) and a
substantial fraction of such events detected in this study overlapped
with those found previously in unaffected individuals (Table S2 in
the SI Appendix). Thus, their relationship to DS phenotypes is
unknown. Unexpectedly, the array data for 4 individuals (Dup21JL,
Dup21JG, Dup21IS, Tetra21MI) detected a copy-number increase
of the HSA21 short arm region containing the gene TPTE and the
pericentromeric long arm, whereas for 5 patients (Dup21HOU,
Dup21WS, Dup21DS, Dup21SW, and Dup21STO; see Table S1 in
the SI Appendix) the copy-number appears to be decreased. Ho-
mologous copies of the TPTE region are found on the acrocentric
arms of 4 other chromosomes (12) and it remains unclear which
chromosome(s) are affected. Nonetheless, our results indicate variation
in copy-number of an expressed gene in acrocentric short arms,
variability that may contribute to both normal and DS phenotypes.

Our breakpoint assignments also enable us to classify each
segmental trisomy with respect to the genes/exons affected. As we
describe in the SI Appendix, 20 of 59 breakpoints occur within
annotated genes, leading to possible gene fragments/fusions with
potentially aberrant function (Table S1 in the SI Appendix). Note
that the relatively high portion of breakpoints within genes may
suggest a role for transcription in the mechanisms for genome
structural rearrangement.
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Fig. 2. Segmental 21 trisomy map for 30 individuals. Patient-IDs are displayed at the top and bottom. Columns to the right, or the only column indicated, represent
FISH/Southernresults (TableS6 in theSIAppendix, karyotypic features summarized inTableS7 in theSIAppendix).Copy-numbersare indicatedbycolor-coding:orange,
1:2; blue, 2:2; Yellow, 3:2; Dark gray, 3:2. Dark gray with black lines, 1:2. The left columns depict oligonucleotide microarray results (see also Table S1 and Fig. S4 in the
SI Appendix). Light gray, 3:2. Medium gray, 4:2. Light gray with black lines, 1:2.
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To generate a DS phenotypic map, we used a Bayesian model and
correlated the breakpoint information on segmental trisomies with
the entire set of phenotypic features recorded for the patients. This
approach provides evidence for the involvement of discrete
genomic regions in the development of several DS phenotypes.
Note that although some individuals contained translocations in-
volving other chromosomes, map assignments were based on 3–14
individuals carrying aneuploidies of HSA21 only [as an exception,
for duodenal stenosis (DST), acute megakaryocytic leukemia
(AMKL), and imperforate anus (IA), only one individual was
available, respectively]. Furthermore, Southern and FISH compar-
isons to parental DNAs confirmed that all detected duplications

correspond to de novo events. Once a phenotype and the trisomic
regions are well defined, an application of Bayes’ theorem provides
the probability that a given gene influences the trait; this approach
exploits general penetrance rates provided by Torfs and Christian-
son (19) for full trisomy cases and normal controls. Fig. 3 and Table
S3 in the SI Appendix depict the resulting phenotypic map of DS.
This Bayesian approach converts prior knowledge of gene location
into posterior probabilities via the likelihood of the observed data.
The likelihood depends on the pattern of dosage alteration across
patients. Here we treat each gene as a single locus on HSA21 that
can influence each trait and assign a uniform prior probability to all
HSA21 genes. The complete derivation of probabilities for the DS
map is given in the SI Appendix.
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We first analyzed DSCHD, a major phenotype associated with
DS that is thought to derive from the abnormal development of the
endocardial cushions and that results in a spectrum of defects
involving the atrioventricular septum and valves. In DS, the risk of
atrioventricular septal defect (AVSD) is �1,000-fold increased
relative to that of the non-DS population (Table S4 in the SI
Appendix) and DS accounts for 70% of all AVSDs (19). The overall
risk of DSCHD in DS is 40–60%, of which approximately half are
AVSDs (19) (SI Appendix). Although some candidate genes have
been implicated for DSCHD (see below), conclusive evidence for
their involvement is lacking. We have previously mapped the
DSCHD region in humans to a 5.27-Mb chromosomal segment
containing 82 genes (10). By using an expanded panel with 14
subjects with DSCHD, we have narrowed this segment to a 2.82-Mb
critical region likely involved in DSCHD endocardial cushion
defects (Fig. 3A). Interestingly, our results exclude a necessary role
for a number of genes previously suggested to be critical for
DSCHD, including D21S55/KCNJ6 (5), RCAN1 (20), Collagens
6A1/2 and 18 (10), and DYRK1A (6) (see SI Appendix and Fig. 3A).

By integrating our map with several other lines of evidence, in
particular, information from segmental trisomic mouse models with
DSCHD (21, 22), we further limit the region (Fig. 3B). Specifically,
the model Dp (16)1Yu/� displaying DSCHD involves only HSA21
regions orthologous to MMU16 (located at 14.4 Mb-42.3 Mb of
HSA21), thereby defining the telomeric DSCHD border and
suggesting lack of a necessary role of the adjacent telomeric region
for DSCHD. Thus, we propose a 1.77-Mb DSCHD critical region,
which contains 10 genes including the promoter and a portion of the
Down syndrome cell adhesion molecule (DSCAM) gene (up to
intron 11–12) that may result in an alternative transcript and defines
the centromeric border. Of the genes in the region, only DSCAM
is known to be highly expressed in the developing heart (Fig. S3 in
the SI Appendix), implicating it as a likely candidate for causing
DSCHD/AVSD.

We next focused on the congenital gut diseases associated with
DS, i.e., Hirschsprung disease (HSCR), DST, and IA, which occur
with 100-, 270-, and 30-fold increased risks, respectively, in DS
relative to the general population (Table S4A in the SI Appendix)
(19). The risk-ratio of HSCR in DS is known to be greater than the
risk conferred by any of the single gene mutations for HSCR (23),
none of which localize to HSA21. Our map (see Fig. 3C) suggests
a discrete critical region �13 Mb that may be involved in this DS
feature. The region contains a candidate gene, DSCAM, which was
previously implicated in HSCR (24) through its predominant
expression in brain, peripheral ganglia, and the developing neural
crest of the gut (see also SI Appendix). Our results provide inde-
pendent support for the involvement of DSCAM in HSCR. For the
remaining 2 gut disorders, DST and IA, candidate genes have not
been reported yet. Using single individuals from our panel for DST
and IA respectively, we suggest regions that are likely involved in
both features (see Fig. 3C and SI Appendix).

We then evaluated candidate genes for DS-associated leukemia.
DS is associated with a 500-fold increased risk of transient myelo-
proliferative disorder (TMD) and a rare form of leukemia, AMKL.
Previous studies have found that mutation/overexpression of
RUNX1, ERG, ETS2 (25, 26), and TIAM1 (27) are associated with
AMKL. Other indirect studies, using gene profiling of DS vs.
non-DS AMKL, suggested that CXADR and BACH1, the down-
stream targets of GATA1, are associated with AMKL (28). We
found a critical region of 8.35 Mb (35–43.35) that is likely contrib-
uting to the risk-increase for both TMD and AMKL (Fig. 3D). This
region includes RUNX1, ERG, and ETS, but does not include
CXDR and BACH1. Furthermore, it likely excludes a necessary role
of TIAM1 in AMKL because the breakpoint in the only DS patient
with AMKL that was available to us deletes the promoter (see SI
Appendix). Finally, an unexpected deletion of the HSA21 short arm
observed in individuals with AMKL and TMD may also contribute
to the phenotype (see SI Appendix).

Another DS phenotype addressed by our map is Alzheimer’s
disease (AD). Increased AD risk in DS has been linked to increased
copy-number of the APP gene and genes nearby (29). Furthermore,
genes in the vicinity of APP may act together to increase the risk of
plaques and tangles in DS, and alternatively, genes elsewhere on
HSA21 may protect against the neuronal damage incurred by
increased APP. Although definitive conclusions will require neu-
ropathology or other evidence of APP processing not found in DS,
the trisomic region in Dup21JJS, a 65-year-old subject with DS who
does not have dementia and has no amyloid accumulation by
functional brain imaging, suggests the involvement in AD of a 1.95
Mb interval including APP. Further, as we point out in the SI
Appendix, the duplicated region of subject JJS argues against
essential roles of genes located distal to 28.12 Mb.

Finally, we suggest regions that may be involved in mental
retardation (MR) (see Fig. 3E), a DS phenotype based on IQ, for
which ascertainment of genes in DS patients remains challenging.
Nevertheless, our map suggests that more than one MR critical
region exists (see Fig. 3E and additional details presented as SI
Appendix) and argues against an essential role of APP in DS-
associated MR (7). Further studies of this panel, with neurocog-
nitive and neural imaging tests focused on DS features, are needed
to parse the contributions of HSA21 regions to brain development
and function in DS.

The resolution of our map, which is equal to or better than that
obtained by most standard linkage analysis studies, enabled us to
evaluate specific hypotheses that have been put forward concerning
the etiology of DS (Table S5 in the SI Appendix). In particular, our
map rules out an essential role for several genes in specific DS
phenotypes because the phenotype is observed in the absence of
trisomy of the relevant region. For example, although both may
contribute, our data do not support a necessary synergistic contri-
bution to MR or DSCHD of the genes DSCR1 and DYRK1A that
were proposed to destabilize NFATC pathways (6). In a similar
fashion, our study significantly limits the hypothesis of a coordi-
nated role for the protein kinase genes DYRK1A, HUNK, and
SNF1LK. Although these pathways may still contribute to DS
cardiac valve defects, they are unlikely to play a central role in
defects of the atrioventricular septae. Nonetheless, the current data
may facilitate identifying unknown members of these pathways
located in genomic regions telomeric to DYRK1A.

A second hypothesis that is challenged by our map relates to the
essential role for APP in MR, although its proposed contribution to
AD (7) is supported (Table S5 in the SI Appendix). Finally, our data
are inconsistent with the hypothesis that the DSCR1 and DYRK1A
genes (6) form a critical region causing most DS features—indeed,
several patients with severe DS features display segmental trisomies
that do not include DSCR1. Thus, our results indicate that there is
no DSCR, i.e., no single region of HSA21 responsible for all or most
severe DS features.

The construction of our DS phenotype map required a large
panel of well-characterized individuals with diverse duplicated
regions spanning HSA21. Our map can be combined with other
data, such as gene expression (43) or phenotypic data gathered in
humans or mouse models, to refine candidate genes and define
mechanisms involved in the etiology of DS.

Materials and Methods
Patient Examination. Procedures for human subjects and confidentiality were
followed as approved by the Cedars–Sinai Medical Center Institutional Review
Board.Alldataweretakenfromtheoriginalmedical recordsandwereconfirmed
by follow-up examinations or discussions with the family and patient.

Overview—Mapping Chromosomal Rearrangements. HSA21 genetic abnormal-
ities were mapped with several approaches by using DNA and chromosomes
generated from blood cells and cell lines. Patients’ karyotypes were first ascer-
tained through standard cytogenetic analyses. To determine breakpoints and
orientations of duplicated chromosomal segments, all patient genomes were
analyzed by FISH with subsets of a panel of 350 BAC/PACs, each of which was
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validated for copy-number normals. This analysis was followed by a higher
resolution mapping by using quantitative Southern blot analysis of single copy
fragments in patient and parental control DNAs (3, 12, 30). To determine each
breakpoint region,FISHusedmultipleBAC/PACDNAs, labeledwithcombinations
of FITC, Texas Red, Cy3, Cy5, and simultaneous hybridization to chromosome and
interphasepreparations.Thechromosomalconstitutionsareavailable inTableS7
in the SI Appendix, and the raw data in Table S6 in the SI Appendix. The 30
individuals either had subtle translocations (Dup21JG, Dup21SOS, Dup21DS,
Dup21JSB, Dup21NA, Dup21NO, and Dup21BA) or internal rearrangements,
duplications, and deletions of HSA21 regions (Dup21JL, Dup21GY, Dup21IS,
Dup21JS, Dup21KG, Dup21GP, Dup21KJ, Dup21BS, Dup21HOU, Dup21WA,
Dup21SOL,Dup21SM,Dup21ZSC,Dup21WB).Further,of2 individuals lackingthe
HSA21 telomeric 100-kb region, one carried an HSA21 region translocated to
chromosome 1 (Dup21JG) validated by PCR and subsequent DNA sequencing. In
some individuals (Dup21GY and Tetra21MI) 2 extra copies (segmental tetrasomy)
were detected, and in others (Dup21WB, Dup21HOU, Dup21WS, Dup21MJF,
Dup21DS, Dup21SW, Dup21STO, and Dup21HAD) only one copy of HSA21 re-
gions (deletion) was detected. Tiling arrays were used for further breakpoint fine
mapping.

Cytogenetic Analysis. Extended chromosome preparations were prepared from
cultured peripheral lymphocytes by methotrexate synchronization (11). Chromo-
somes were stained by G-banding (GTG) and R-banding (RHG) techniques (11).

FISH and Quantitative Southern Blot Dosage Analysis. Large-fragment physical
maps of human HSA21 were generated and integrated to define the copy-
numbers and/or structural rearrangements (30–35). Sources and references for
each DNA probe are in Table S6 in the SI Appendix. Probes were extracted from
BAC, PAC, or cosmid clones and labeled by indirect or direct methods using a Nick
Translation Kit (Invitrogen). Biotin-11-dUTP or Dig-11-dUTP (Sigma) were used
for indirect labeling,andAlexaFluor488–5-dUTP,AlexaFluor568–5-dUTP,Alexa
Fluor 594–5-dUTP, and Alexa Fluor 647–5-dCTP (Molecular Probes) were used for
direct labeling (36). To define breakpoints we performed an initial screen fol-
lowed by more specific testing with BACs progressively closer to the breakpoints.

In each case, 10–30 copy-number determinations were performed, 2–4 BAC
DNAs were hybridized simultaneously to target chromosomes, and 20–50 cells
were analyzed. FISH and posthybridization detection were performed as in ref.
36. Multicolor images were captured with a Zeiss Axioplan 2 microscope
equippedwithanAxiocamMRMcameraandconjugatedtoMetasystemsoftware
(Microsoft). Procedures for DNA isolation and digestion, agarose gel construc-
tion, Southern blotting, probe labeling, hybridization, and autoradiogram de-
velopment were conducted as in ref. 37. Southern blots used 8–12 paired lanes
(16 to 24 totals) of patient and control DNAs. Densitometric analyses used the log
transformation of density measurements from autoradiograms. All probes were
isolatedasDNAfragments forSouthernblotproceduresorasplasmidsorcosmids
for FISH studies. DNAs were obtained from peripheral blood, fibroblasts, or
lymphoblastoid cell lines, with confirmed karyotype.

High-Density Oligonucleotide Tiling Array Analysis. DNA from cell lines or blood
was used to probe a custom tiling array platform (Nimblegen Technology) by
using high-resolution comparative genome hybridization [HR-CGH; (13)]; the
isothermal array (13) contained 45–85-bp oligonucleotide probes. The array
covered all regions of HSA21 to which probes could be uniquely mapped, includ-
ing regions of the HSA21 short arm. The median probe distance was 90 bp, a
density enabling breakpoint-mapping at 200–300-bp resolution (13, 14). DNA
from the patients was labeled with Cy3 and hybridized to the array along with
Cy5-labeled DNA from a reference pool of 7 individuals (healthy male individuals,
Promega). Array normalization was performed with the Qspline algorithm (38).
Copy-number changes were called by using the BreakPtr algorithm (with the
‘‘core parameterization’’; default parameters) as described in ref. 14. In the
majority of cases a single array was used; in one case averaged signals from 2
arrays were used.
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